City Of Bentonville

Assessment of need for Technically Based Local Limits

This assessment of technically based local limits is meant to compliment and supplement Section 3.2 (Technically Based Local Limits) of the City's Pretreatment Ordinance No. 2019-185, for development of local limits if necessary or demonstrate they are not necessary per 40 CFR 403.8(f)(4). Maximum Allowable Headworks Loadings (MAHLs), and thus Maximum Allowable Industrial Loadings (MAILs), will continually change from day to day depending on flow and wastewater characteristics. This document is meant to establish average MAHLs/MAILs over an extended period of time with enough of a safety factor to take into account those daily fluctuations, therefore avoiding the necessity to revise and adopt the City's Pretreatment Ordinance on a frequent basis.

The General Pretreatment Regulations in 40 CFR Part 403, as pursuant to 40 CFR 403.5 (a) and (b) and required by NPDES permit, requires Publicly Owned Treatment Works (POTW) having an approved pretreatment program to assess the need in adopting Technically Based Local Limits (TBLLs) of pollutants for protection of the environment, wastewater treatment facilities and biosolids from pass-through or interference from common pollutants of concern. TBLLs are defined in the U.S. Environmental Protection Agency Introduction to the National Pretreatment Program publications as "specific discharge limits developed and enforced by POTWs upon industrial or commercial facilities (IUs) to implement the general and specific discharge prohibitions listed in 40 CFR 403.5(a)(I) and (b)", and are to be assessed occasionally, as stipulated by individual NPDES permits, typically every five (5) years.

The purpose of evaluation is to determine and document whether or not the City of Bentonville needs to adopt Technically Based Local Limits (TBLLs) for Pollutants of Concern (POC) to protect its Water Resource Recovery Facility (WRRF) from pass through or interference, and to assure that biosolids produced by the WRRF can be disposed of by land application in accordance with 40 CFR 503. The examination of the need for TBLLs is pursuant to 40 CFR 403.5 (a) and (b), and as mandated by Part II (8)(B) of the City of Bentonville's NPDES permit AR0022403.

Common POC generally studied for TBLL development include Arsenic, Cadmium, Chromium, Copper, Cyanide, Lead, Mercury, Molybdenum, Nickel, Selenium, Silver and Zinc as per EPA Region 6 guidance. Detailed sampling and analysis of Influent and Effluent for calculation of TBLLs for the common pollutants of concern is conducted at least four (4) times per year. Tables I and 2 summarize the Influent and Effluent results taken from 2016 to 2020. Sampling and analysis of biosolids is conducted quarterly, and results of biosolids analysis performed from 2016 to 2020 can be seen in Table 3, which shows Bentonville's biosolids results, individual and average, are well below maximum limits required by EPA. Background (domestic) information is conducted at least two (2) times per year, and Table 4 contains results of sampling and analysis collected on background, or domestic only sources (Receiving no industrial flow), from 2016 to 2020. Data from each sampling entity was averaged and can be seen in Table 5 along with removal percentages for the Bentonville WRRF.

Water Quality Standards, Sludge (Biosolids) Loadings and Plant Inhibition loadings are established to ascertain those values in calculating the Maximum Allowable Headworks Loadings (MAHLs) and the Maximum Allowable Industrial Loadings (MAILs), which are established to protect the WRRF from pass through causing pollution of the receiving stream.

Table 1. Influent TBLL Data: 2016-2020 (All results are Total)

					Г		ľ	r -		ı —			_	_							
æ	l/gn	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		V	V	V	V	v	V	V	V	V	v	V	V	V	V	V	V	V	V	V	V
ω	l/gn	∞	∞	∞	∞	∞	∞	∞	∞	10	10	10	10	10	10	10	10	10	10	10	10
_		V	V	V	V	v	V	V	V	v	V	V	V	V	V	V	V	V	V	V	V
As	l/gn	3	5.6	0.52	4.9	7.7	5.6	6.2	3.2	1.9	0.82	1.6	2.6	1.1	1.6	06	20	14	40	23	20
2	l/8n	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
		V	V	V	V	V	٧	٧	V	٧	V	V	V	V	V	V	V	٧	٧	٧	٧
ъ	l/gn	10	10	10	10	10	10	10	10	10	10	10	10	10	10	22	10	10	10	10	10
		V	V	v	v	V	V	V	V	V	V	V	V	V	V		V	V	V	V	V
Zu	l/gn	120	210	29	250	270	140	110	140	66	240	140	180	69	140	250	140	71	170	140	320
Ag	l/gn	1.0	1.6	0.50	06.0	4.80	0.61	0.50	0.62	0.83	0.50	0.50	0.50	0.62	0.91	0.91	0.50	0.50	0.50	0.50	0.57
				_		_		V	-		V	V	V		_	_	V	V	V	V	
Se	ng/l	5	2	5	2	2	2	2	2	2	2	2	2	2	2	2	5	2	2	5	30
		V	>	٧	٧	٧	٧	٧	V	V	V	V	V	V	V	٧	V	٧	V	V	_
Ż	l/gn	5.4	10	3.7	7.3	8.3	4.3	5.6	4.4	6.7	6.2	3.9	6.4	3.2	5.5	8.2	4.2	3.1	4.3	4.3	5.6
Hg	l/gn	0.0740	0.1100	0.0400	0.0500	0.0190	0:030	0.0610	0.0069	0.0100	0.1100	0.0810	0.0470	0.0087	0.0200	0.0450	0.0300	0.0240	0.0005	0.0005	0.0540
_	_	Н			_	-	-	-	-				\dashv		-	-	-	=	٧	٧	=
Pb	l/gn	1.1	1.7	0.5	3.2	2.4	1	1.5	1.2	0.68	1.2	1.2	1.5	0.56	1.1	1.6	0.5	0.5	0.96	0.86	1.2
-	-		_	<u> </u>	_	-		-		_	-	-							-	-	-
3	l/gn	20	29	1.8	33	51	27	31	39	30	16	16	28	14	29	45	15	13	23	24	42
-	-																				
ਨ	l/gn	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	-			~	Ť	_	$\stackrel{\checkmark}{}$	<u> </u>	V	٧	V	_		Ť	Ť						Ť
Date		1/11-12/16	4/11-12/16	7/11-12/16	10/4-5/16	1/9-10/17	4/3-5/17	7/10-11/17	10/9-10/17	1/29-30/18	4/9-10/18	7/9-10/18	10/8-9/18	1/14-15/19	4/8-9/19	9/9-10/19	10/28-29/19	1/20-21/20	4/6-7/20	7/14-15/20	10/5-6/20

Table 2. Effluent TBLL Data: 2016-2020 (All results are Total)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	040	В	უ		Pb	НВ	ž	_	Se		Ag	Zu		ъ		S	4	As	Š		Be
Color Colo	חמוב	l/gn	l/gn		l/gn	l/Bn	l/gn		l/gn	_	l/8r	l/gn		l/gn		l/gn	å	1/5	/gn		l/gn
6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0007 4.7 0.5 0.5 0.001 0.001 0.0014	/13-14/16		2.3	V	0.5	0.0011	3.2	V	2	V	0.5	47			٧	0.01		-			
6 0.5 1.5.5 6 0.5.5 6 0.5.5 6 0.5.5 6 0.5.5 6 0.5.5 0.5.5 0.001 0.	/13-14/16		2.5	V	_	0.0007	4.7	V	5	V	0.5	37	Г		٧	0.01		$\overline{}$			
6 0.5 0.5 0.5 0.5 0.5 0.5 0.0	/13-14/16		2.5	V	0.5	0.0014	4.3	V	5	V	0.5	33			٧	0.01					
0.5 3.1 0.0 3.4 5 45 45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0/6-7/16		2.5	V	0.5	0.00051	5.1	V	5	V	0.5	57			٧	0.01		\vdash		Г	
Colorado	/11-12/17		3.1	V		0.0015	3.4	٧	5	V	0.5	45			٧	0.01				Г	
0.5 1.2.4 0.004 3.6 0.5 3.1 1.0 0.01 0.91 8 7 0.5 4.7 0.5 0.0013 2.8 5 0.01 0.01 0.92 10 0.01 0.92 0.01 0.02 10 0.01 0.02 10 0.01 0.02 0.02 0.02	/5-6/17		2.0	V		0.0013	2.8	V	5	V	0.5	30			V	0.01				Г	
7 6 6.5 4.7 6 0.5 1 6 0.5 1 0.0013 2.8 6 0.5 1 7 1 6 0.01 6 0.01 1 0.02 6 1 7 1 6 0.01 1 0.02 7 1 0 0 1 2 1 0 0 1 2 0 0 1 2 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	11-12/17		2.4	V		0.004	3.6	V	5	V	0.5	31			٧	0.01		П			
8 0.5 13 0.00 3.5 9 0.5 47 10 0.01 0.08 10 10 0.01 0.05 10 0.01 0.05 10 0.01 0.05 10 0.01 0.05 10 0.01 0.05 0.01 0.01 0.05 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 </td <td></td> <td></td> <td>4.7</td> <td>V</td> <td></td> <td>0.0013</td> <td>2.8</td> <td>V</td> <td>5</td> <td>V</td> <td>0.5</td> <td>37</td> <td>П</td> <td></td> <td>٧</td> <td>0.01</td> <td></td> <td></td> <td></td> <td>П</td> <td></td>			4.7	V		0.0013	2.8	V	5	V	0.5	37	П		٧	0.01				П	
0.5 <td></td> <td></td> <td>13</td> <td>V</td> <td></td> <td>0.0060</td> <td>3.5</td> <td>٧</td> <td>5</td> <td>V</td> <td>0.5</td> <td>47</td> <td></td> <td></td> <td>٧</td> <td>0.01</td> <td></td> <td></td> <td></td> <td></td> <td></td>			13	V		0.0060	3.5	٧	5	V	0.5	47			٧	0.01					
6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0			2	V		0.0013	2.8	٧	5	V	0.5	30			٧	0.01				П	
8 0.5 4.7 6 0.5 0.0 37 6 0.5 10 6 0.0 6 0.0 10 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 6 0.0 <td></td> <td></td> <td>2.4</td> <td><u> </u></td> <td></td> <td>0.0040</td> <td>3.6</td> <td>٧</td> <td>2</td> <td>V</td> <td>0.5</td> <td>31</td> <td></td> <td></td> <td>٧</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td>			2.4	<u> </u>		0.0040	3.6	٧	2	V	0.5	31			٧		0				
0.5 3.6 0.00 <			4.7	V		0.0013	2.8	٧	5	V	0.5	37			٧	0.01					
0.5 6.0.5 6.0.5 6.0.5 7 6.0.5 7 6.0.5 7 6.0.5 7 </td <td></td> <td></td> <td>3.6</td> <td>V</td> <td></td> <td>Щ</td> <td>2.0</td> <td>٧</td> <td>5</td> <td>V</td> <td>0.5</td> <td>50</td> <td></td> <td></td> <td>٧</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			3.6	V		Щ	2.0	٧	5	V	0.5	50			٧						
0.5 4.6 0.5 0.0011 2.7 5 0.5 44 < 10 < 0.01 3.0 < 10 3 6 0.5 2 0.0005 2.5 3.7 < 10 < 0.01 4.0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01			6.2	٧			2.7	٧	5	V	0.5	37			٧	0.01					
719 60.5 2.8 60.5			4.6	V		0.0011	2.7	V	5	V	0.5	44			V	0.01					
20 4 3 5.5 4 6 3 4 6 6 3 4 6			2.8	V			2.5	٧	5	V	0.5	27			٧	0.01				Г	
20 0.5 0.00061 3.8 5 0.5 10 0.01 13 0.01 1 3.7 10 20 0.5 0.5 0.5 0.01 0.01 1.4 10 <td< td=""><td></td><td></td><td>5.5</td><td>V</td><td></td><td>0.0037</td><td>1 2</td><td>٧</td><td>30</td><td>V</td><td>3</td><td>37</td><td></td><td></td><td>٧</td><td>0.01</td><td></td><td></td><td></td><td></td><td></td></td<>			5.5	V		0.0037	1 2	٧	30	V	3	37			٧	0.01					
0 < 0.5 4.6 0.5 0.00061 2.8 5 6 0.5 0.00 0.00041 2.8 5 6 0.5 0.5 0.00			4	~			3	V	5		0.5	31		13	٧	0.01				Г	
< 0.5 6.9 < 0.5 0.0024 2.5 < 5 < 0.5 42 < 10 < 0.01 < 50 < 10 <			4.6			0.00061	2.8	V	5	V	0.5				V	0.01					
			6.9	V		0.0024	2.5	٧	5	V	0.5	42			٧	0.01					

Table 3. BNV WRRF Biosolids Data: 2016-2020 (All results are Total)

Date		Cd		Cu		Pb		Hg	Ni		Se	Zn	Cr		As		Мо
1/7/2016		0.56	П	210	П	6.3		0.55	11	<	7	400	13		5	П	6.1
4/4/2016	П	0.65	П	160		6.4		0.45	14	<	7	360	13		5		5.4
7/6/2016	П	0.45	П	180	П	7.0		0.49	13	<	7	540	14	<	5	П	6.0
10/3/2016	<	0.4		170	П	7.5		0.82	8.3	<	7	350	15	<	5		5.3
1/9/2017	П	0.99		170	П	5.9		0.49	12	<	7	500	14	<	5		4.7
4/21/2017	П	1.02		170		6.9		ND	15.1		5.88	505	13.2		2.47		5.71
7/6/2017	<	0.4	П	170	П	14		0.79	18		7.6	620	16	<	5	П	4.0
10/5/2017		0.95		190	П	6.0		0.54	14	<	7	490	16	<	5		4.4
1/4/2018	<	0.4		190	<	4		0.48	15	<	7	430	11	<	5		4.0
4/23/2018		1.19		168	П	7.00		ND	19		5.95	398	12.4		3.80		5.36
7/9/2018		ND		177	П	ND		0.477	18.8		ND	508	29.1		ND		ND
10/4/2018	\Box	ND		213		ND		0.374	16.2		ND	633	23.5		ND		ND
1/28/2019		0.74		140		4.9		0.42	490	<	7	380	26	<	5		4.0
4/2/2019		0.90		130	<	4		0.44	14	<	7	350	15		16		2.6
7/2/2019	П	0.48		64	<	4		0.51	7.6	<	7	160	11	<	5		1.1
10/28/2019		1.1		170		5.0		0.87	16	<	7	640	39	<	5		2.9
1/13/2020		0.83		110	<	4	Г	0.62	11	<	7	430	26		8.6		1.2
4/9/2020	П	0.82		120	<	4	Г	0.47	15	<	7	490	34		6.2		1.4
7/15/2020	П	0.42	П	120	Т	7.4	Т	0.57	14		10	710	 24	<	5	<	1
10/8/2020	<	0.4		120	<	4		0.67	11	<	7	600	22	<	5		3.4
AVG.	<	0.71		157	<	6.0		0.56	37.7	<	7.08	475	19.4	<	5.67	<	3.81
EPA Max Limits (mg/kg)		85		4300		840		57	420		100	7500	3000		75		75

ND - Non-Detect

Table 4. Background (Domestic Only) TBLL Data: 2016-2020 (All results are Total)

Date		Cd		Cu		Pb		Hg		Ni		Se	Г	Ag	Zn		Cr		CN		As		Мо		В	- I
Date		ug/l		ug/l		ug/l		ug/l		ug/l		ug/l		ug/l	ug/l		ug/l	L	ug/l	L	ug/l	J.,	ug/l	L.	ug	<u>/L</u>
3/28-29/16		0.318		7.9		6.39		ND		7.00		ND		ND			2.000	Ш	ND		0.539		0.269	Ш		
4/25-26/16	П	ND	T	22.5	П	ND		ND		4.25		ND					ND		ND				ND	Ш		
9/6-7/16	П	ND	T	19.5	П	3.75		ND		4.25		ND		ND	141		ND		3.09		ND		ND	Ш		
11/28-29/16	П	ND	T	20.8		ND		ND		3.00		ND		ND	ND		ND		ND		ND		ND	Ш		
5/23-24/18	П	ND		0.00971		ND		ND		ND		ND		ND	0.0666		ND		ND		ND		ND		٨	VD
7/30-31/18	П	ND		ND		ND		ND		ND		ND		ND	0.208		ND		ND		ND		ND		٨	VD
8/7-8/18		ND		0.0394		ND		ND		ND	Γ	ND		ND	0.464		ND		ND		ND		ND		Λ	VD
10/23-24/18	[7]	0.5		26	П	0.89	<	0.20		5.4	<	5		0.63	110	<	10	<	10		2.90	<	10	<	(0.5
8/28-29/19	<	0.5		35		0.55				4.2	<	5	<	0.5	190	<	10	<	10		55	<	10	<	(0.5
9/18-19/19	П	0.52		54		0.8				9.7	<	5	<	0.5	660	<	10	<	10		540	<	10	<	(0.5
10/8-9/19	<	0.5	T	37		0.57				5.8	<	5	T	1.5	280	<	10	<	10		35	<	10	<	(0.5
7/27-28/20	<	0.001	1	0.0271	<	0.005	<	0.00005	<	0.01	<	0.005	<	0.002	1.16	<	0.01	<	10	<	0.005	<	0.01	<	0	.01
8/10-11/20		0.002		0.148	<	0.01	<	0.0001	<	0.02		0.0109	<	0.004	1.45	<	0.02	<	10	<	0.01	<	0.02	<	0	.02

ND - Non-Detect

Table 5. Average Influent, Effluent, and Background TBLL Data: 2016-2020

Pollutant		Domestic		Influent		Effluent	Avg. WWRF
Cadmium, T	<	0.33	<	0.50	<	0.63	67*
Copper, T		18.58		26.34		4.12	84
Lead, T	<	1.62	<	1.22	<	0.63	81
Mercury, T	<	0.07	<	0.04	<	0.002	96
Nickel, T	<	4.36		5.53		3.14	43
Selenium, T	<	3.34	<	6.25	<	6.25	50*
Silver, T	<	0.52	<	0.89	<	0.63	79
Zinc, T		138.43		161.40	<	41.50	77
Chromium, T	<	6.00	<	10.60	<	10.15	59
Cyanide, T	<	9.01	<	0.01	<	0.01	69*
Arsenic, T	<	90.49		14.17	<	4.01	87
Molybdenum, T	<	5.76	<	9.20	<	11.30	50*
Beryllium, T	<	0.34	<	0.50	<	1.00	50*

^{*}Average EPA Percent Removal used in place of actual percent WRRF removal.

Table 6. Pollutant Limits for Water Quality and Sludge for Determination of MAHLs and MAILs*

D-Waterst	Water Quality	Sludge	Inhibition	MAHL	MAIL
Pollutant	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day
Cadmium, T	0.57	1.05	26.42	0.57	0.47
Copper, T	7.02	46.44	26.42	7.02	5.48
Lead, T	2.7	10.01	26.42	2.7	2.24
Mercury, T	0.01	0.56	2.64	0.01	0.008023
Nickel, T	19.85	7.87	26.42	7.87	6.55
Selenium, T	0.3	1.84	5.28	0.3	0.25
Silver, T	2.58		6.61	2.58	2.18
Zinc, T	43.21	102.76	7.93	7.93	3.1
Chromium, T	81.94	33.59	26.42	26.42	22.41
Cyanide, T	0.5		2.64	0.5	0.16
Arsenic, T	72	1.09	2.64	1.09	0.92
Molybdenum, T	52.85	1.15	5.28	1.15	0.97
Beryllium, T	0.32		2.64	0.32	0.26

^{*}Boxes highlighted in yellow denote the driving MAHL/MAIL criteria for TBLL determination

Current values established using the past 5 years data can be found in Table 6. Water Quality Standards are determined by the Arkansas Division of Environmental Quality (ADEQ), while Sludge and Inhibition loadings use biosolids, industrial, influent, effluent and domestic only data collected by the WRRF and Pretreatment Staff. These values were determined in December 2020 by City Pretreatment staff following EPA TBLL guidance and ADEQ's Continuing Planning Process as well as ADPC&E's Regulation No. 2 Water Quality Criteria. MAHLs, and therefore MAILS, in determining the need for TBLLs, as well as calculations for and adoption of TBLLs, if necessary, are chosen based on the most stringent of the three loading values.

MAHLs for Nickel, Arsenic and Molybdenum are Sludge driven, while Zinc and Chromium MAHLs values are based on Plant Inhibition levels, which are denoted by the yellow highlighted boxes in Table 6. All other POC MAHLs are derived by Water Quality values established by ADEQ. Given the plant loadings and calculated MAHLs, there is no indicated need for TBLL development for any pollutant listed in Table 4. A comparison of calculated MAILs and average industrial loadings, for the years 2016 and 2020, can be seen in Table 7 indicating industrial loadings for the pollutants Cu, Zn, and Mo are at least 90% below MAILs. The maximum percentage in Table 7 was calculated using the highest loading value determined from each pollutant and dividing by the appropriate MAIL.

Table 7. Average Industrial Loadings and MAILS comparison

Industry	Cu	Zn	Мо
Industry	lbs/day	lbs/day	lbs/day
Walmart TMG 2016	0.01	0.10	
Walmart TMG 2017	0.002	0.03	
Walmart TMG 2018	0.002	0.03	
Walmart TMG 2019	0.004	0.03	< 0.01
Walmart TMG 2020	0.01	0.03	
MAIL	5.48	3.10	0.97
MAX%	0.16	3.06	< 0.87

The City concurs with the calculations for its MAHLs and MAILs and will certify that this technical evaluation has demonstrated that the existing technically based local limits (TBLLs) are based on current state water quality standards and are adequate to prevent pass through of pollutants, inhibition of or interference with the treatment facility, worker health and safety problems, and sludge contamination.

TBLLs for the City of Bentonville WRRF will be reevaluated whenever changes in conditions require, but no less than every five (5) years.

CALCULATIONS OF ARKANSAS WATER QUALITY-BASED EFFLUENT LIMITATIONS For an Arkansas River/Stream

SIEP 1: INPUT 1 WO LETTER CODE FOR ECOREGION (Use Code at Right)	Ю
Basin Name (Ozark Highlands
Facility	
Permittee & Date	Bentonville
NPDES Permit No.	AR0022403
Outfall No.	1
Plant Avg Flow (MGD)	3.17
SIUs Avg Flow (MGD)	0.02
Domestic Flow (MGD)	3.15
Plant Design Flow (MGD)	4.00
Plant Design Flow (cfs)	6.18
Receiving Stream	
Is this a large river? (see list at right)(enter "1" if yes, "0" if no; make entry as a number)	0
Name of Receiving Stream:	Town Branch
Waterbody Segment Code No.	3.5
Is this a lake or reservoir? (enter '1' if yes, '0' = no; make entry as a number)	0
Is seasonal critical flow applicable (1=yes, 0=no); see Reg 2 page 1-3 for details.	0
(Reserved) DO NOT INPUT DATA INTO CELL H22, H23 & H24LEAVE BLANK	۷-
(Reserved)	<i>ر</i> .
(Reserved)	<i>د</i> .
(Reserved)	۰.
(Reserved)	<i>د</i> .
(Reserved)	۸.
Ecoregion TSS (mg/l) (For Large River, See List to Right)	2.50
Ecoregion Hardness (mg/l)	148.00
Enter 7Q10 (cfs) (Reserved)	0.10
Long Term Avg / Harmonic Mean Flow (cfs)	0:30
Using Diffusers (Yes/No)	No
ph (Avg)	6.83
Percent (%) of 7Q10 for Chronic Criteria	0.67
Percent (%) of 7Q10 for Acute Criteria	0.33
Water Effect Ration (WER)	1.00
EPA Statistical Factor for Data (enter 2.13 for <20; enter 1 for >20)	2.13
Ave Monthly Limit LTA Multiplier (Ref. page 103 TSD for WQ-Based Toxics Control)	1.55
May Daily Imit ITA Multipliar (Dat. ull ul)	0 44

Codes & TSS for Ecoregions and Large Rivers	ers		_	Total Hardness for:	ess fo	Ľ	
Ouachita Mts. Eco (OM) 2.00	2.00	I/Bm	_	Arkansas River	ır 125	H	I/gm
Ozark Highlands Eco (OH)	2.50	l/gm	_	Ouachita River	7 28	\vdash	l/gm
Boston Mts. Eco (BM)	1.30	l/gm	_	White River	r 116	H	l/gm
Ark River Valley Eco (AV)	3.00	mg/l	_	Red River	r 211	-	mg/l
Arkansas (Ft. Smith to Dardanelle Dam	12.0	I/gm	_	St. Francis River	r 103	\vdash	I/gm
Arkansas (Dardanelle Dam to Terry L&	10.5	l/gm	_		L	H	
Arkansas (Terry L&D to L&D No. 5)	8.3	I/gm	_	Gulf Coastal	31	Н	mg/
Arkansas (L&D No. 5 to Mouth)	9.0	mg/l	_	Ozark Highlands	148	_	mg/
				Boston Mount	25	H	l/gm
Gulf Coastal Eco (GC)	5.5	mg/l	_			-	
Delta Ecoregion (DL)	8.0	mg/l	_	Ouachita Mount	t 31	H	l/gm
			_	Ark River Valley	y 25	H	l/gm
White (Above Beaver Lake)	2.5	I/gm	_	Delta	a 81	Н	l/gm
White (Below Bull Shoals to Black Riv)	3.3	mg/l	l				ı
White (From Black River to Mouth)	18.5	l/gm					
St. Francis River	18.0	l/gm					
Ouachita (Above Caddo River)	2.0	l/gm					
Ouachita (Below Caddo River)	5.5	l/gm					
Red River	33.0	l/gm					

Large Rivers Mississippi River, Arkansas River, Red River White (Below confluence with Black River) Ouachita (Below confluence with Little Miss. River)

Treatment Facility: City of Bentonville

Data Range: 2016 - 2020

Sata Mange, 2010 2020	2020													
	÷	Water	Sludge	Inhibition**	Water	Sludge****	Inhibition	MAHI	NAHC	Domestic	Allocation	1004	Max Inf	Max Effluent
Pollutant	% Kem***	Quality mg/l	mg/kg	mg/l	Quality* Ibs/day	lbs/day	lbs/day	lbs/day	mg/l	ibs/day	for %SF lbs/dav^	lbs/day	Exceeded	vs (I/am/OW
Cadmium	67.0	0.0071	85	1.00	0.57	1.05	26.42	0.57	0.02	0.01	0.48	0.47	Z	ON ON
Copper	84.4	0.0415	4300	1.00	7.02	46.44	26.42	7.02	0.27	0.49	5.97	5.48	2 2	2 2
Lead	81.5	0.0189	840	1.00	2.70	10.01	26.42	2.70	0.10	90.0	2.30	2.24	S	S S
Mercury	96.2	0.00001	57	0.10	0.01	0.56	2.64	0.01	0.000358	0.000007	0.008030	0.008023	ON ON	S CN
Nickel	43.2	0.4266	420	1.00	19.85	7.87	26.42	7.87	0.30	0.14	69.9	6.55	ON ON	S CN
Selenium	20.0	0.0056	100	0.20	0:30	1.84	5.28	0.30	0.01	0.0003	0.25	0.25	CN.	CZ
Silver	79.4	0.0201		0.25	2.58		6.61	2.58	0.10	0.01	2.19	2.18	S S	2 Z
Zinc	77.1	0.3749	7500	0:30	43.21	102.76	7.93	7.93	0:30	3.63	6.74	3.10	CN	N CN
Chromium	59.1	1.2686	3000	1.00	81.94	33.59	26.42	26.42	1.00	0.05	22.46	22.41	S N	S
Cyanide	0.69	0.0059		0.10	0:50		2.64	0.50	0.02	0.26	0.43	0.16	S S	S N
Arsenic	87.3	0.3461	75	0.10	72.00	1.09	2.64	1.09	0.04	0.01	0.93	0.92	Yes	Q Q
Molybdenum	20.0	1.0000	75	0.20	52.85	1.15	5.28	1.15	0.04	0.01	0.98	0.97	S	S S
Beryllium	20.0	0.005979		0.10	0.32		2.64	0.32	0.01	0.01	0.27	0.26	S S	S
	Driving Criteria													
Dry tor	Dry tons/day of sludge	4.59												
	Safety Factor	0.15												

^{*} lbs/day = mg/l X 8.34 X POTW avg flow / (1-Total POTW %Rem)

^{**} EPA Default values (most conservative) from page G-1 of of the 7/04 EPA TBLL guidance manual (Be est. @ 0.10 mg/l; Se & Mo est. @ 0.2 mg/l; Ag from old 12/87 EPA guidance manual)

*** EPA Default Median Removal Numbers from page R-2 of the 7/04 TBLL guidance manual for Cd, Se, Mo, & CN (Be est. @ 50%)

**** Ibs/day = dry tons/day X 0.002 X CFR 503 criteria / % removal from EPA Pret. Prog. Implementation workshop mtrl. ~ 6/93

^\Isin Ibs/day = mg/l X Avg POTW flow X 8.34

\Isin Ibs/day = (1 - SF) X MAHL

\Isin Ibs/day = (1 - SF) X MAHL

MAIL = Maximum allowable industrial loading = MAHL - Allocation for % SF - Domestic Ibs/day

Treatment Facility: City of Bentonville Data Range: 2016 - 2020 Influent (mg/l) - No data entered if Non-detects < MQL

					Z	INFLUENT SAMPLING	1PLING						
Date	Cadmium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc	Chromium	Cyanide	Arsenic	Molybdenum	Beryllium
	l/gm	mg/!	mg/l	mg/l	I/gm	mg/l	mg/l	mg/l	mg/I	mg/l	l/gm	l/gm	mg/l
1/11-12/16		0,0200	0.0011	200000	0.0054		0.001	0,1200			0.003		
4/11-12/16		0.0290	0.0017	0.00011	0,0100		0,0016	0,2100			0.0056		
7/11-12/16		0.0018		0,00004	0.0037			0,0290			0.00052		
10/4-5/16		0.0330	0.00320	0,00005	0,0073		600000	0.2500			0.0049		
1/9-10/17		0.0510	0.00240	0.00002	0,0083		0.0048	0.2700			0.0077		
4/3-5/17		0.0270	0.00100	6000000	0.0043		0.00061	0.1400			0.0056		
7/10-11/17		0.0310	0.00150	0.00006	0.0056			0.1100			0.0062		
10/9-10/17		0.0390	0.00120	0,00001	0.0044		0.00062	0,1400			0.0032		
1/29-30/18		0.0300	89000 0	0,00001	0.0067		0,00083	06600			0.0019		
4/9-10/18		0,0160	0,00120	0,00011	0.0062			0,2400			0.00082		
7/9-10/18		0.0160	0.00120	800000	0.0039			0,1400			0.0016		
10/8-9/18		0.0280	0.00150	0.00005	0,0064			0.1800			0,0026		
1/14-15/19		0,0140	0.00056	0.00001	0,0032		0.00062	0690"0			0.0011		
4/8-9/19		0,0290	0.00110	0,00002	0.0055		0,00091	0.1400			0.0016		
9/9-10/19		0.0450	0,00160	0.00005	0,0082		0,00091	0.2500	0.022		0060'0		
10/28-29/19		0,0150		0,00003	0.0042			0,1400			0.0200		
1/20-21/20		0.0130		0,00002	0,0031			0,0710			0.0140		
4/6-7/20		0.0230	96000'0		0.0043			0.1700			0.0400		
7/14-15/20		0.0240	98000'0		0.0043			0,1400			0.0230		
10/5-6/20		0.0420	0,00120	0,00005	0.0056		0,00057	0,3200					
Quantitation Level (QL):	0.0005	0.0005	0.0005	0,000002	0.0005	5000	0.0005	0.02	0.01	0.01	0.0005	0.01	0.0005
Average		0.0263	0.0014	0.000049	0.0055		0.0012	0,1614	0.0220		0.0123		
Maximum		0.0510	0,0032	0.0001	0,0100		0.0048	0,3200	0,0220		0.0900		
All Concs > QL (Yes/No)	No	Yes	o _N	No	Yes	No	No	Yes	2	ON N	No.	CN	S

Effluent (mg/l) No data entered if Non-detects < MQL; entered 1/2 MQL if detected in Inf. & ND in Eff

					#	EFFLUENT SAMPLING	APLING						
Date	Cadmium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc	Chromium	Cyanide	Arsenic	Molybdenum	Beryllium
3	I/gm	l/gm	mg/l	mg/l	l/gm	l/gm	l/gm	l/gm	mg/I	mg/l	I/Bm	mg/I	mg/l
1/13-14/16		0,00230	0.00025	0,0000011	0.00320			0.0470			0,00062		
4/13-14/16		0.00250	0.00025	0.0000007	0.00470			0.0370			0.00067		
7/13-14/16		0.00250		0.0000014	0.00430			0.0330			0.00064		
10/6-7/16		0.00250	0.00025	0.0000005	0,00510			0.0570			0.00092		
1/11-12/17		0.00310	0.00025	0,0000015	0,00340			0.0450			0.00059		
3/5-6/17		0.00200	0.00025	0,0000013	0,00280			0.0300			0.00063		
7/11-12/17		0,00240	0.00025	0.0000040	0.00360			0,0310			0.00091		
10/10-11/12		0.00470	0.00025	0.0000013	0,00280			0,0370			0,00092		
1/31-2/1/18		0.01300	0.00025	0,0000060	0,00350		0.00025	0.0470			0,00058		
4/11-12/18		0.00200	0.00025	0.0000013	0,00280			0.0300			0.00063		
7/11-12/18		0.00240	0.00025	0.0000040	0.00360			0.0310			0.00091		
10/10-11/18		0.00470	0.00025	0,0000013	0,00280			0.0370			0.00092		
1/16-17/19		0.00360	0.00025	0.0000010	0.00200		0.00025	0.0500			0.00025		
4/10-11/19		0.00620	0.00025	0.0000010	0.00270		0.00025	0.0370			0.00025		
9/11-12/19		0.00460	0.00025	0.0000011	0.00270		0.00025	0.0440	0.005		0.00300		
10/30-31/19		0.00280		0.0000010	0.00250			0.0270			0.00420		
1/22-23/20		0.00550		0.0000037	0.00200			0.0370			0.00790		
4/8-9/20		0,00400	0.00025		00800'0			0.0310	0.013		0.00370		
7/16-17/20		0.00460	0.00025	0.0000006	0,00280			0.0100			0.00140		
10/7-8/20		0.00690	0.00025	0.0000024	0.00250		0.00025	0.0420					
Quantitation Level (QL):	0.0005	0.0005	0.0005	0.000002	0.0005	0.005	0.0005	0,02	0.01	0.01	0 0005	0.01	0.0005
Average		0.0041	0.0003	0.000002	0,0031		0.00025	0,0370	0600.0		0.0016		
Maximum		0,0130	0.0003	90000000	0.0051		0.00025	0.0570	0.0130		0.0079		
All Concs > QL (Yes/No)	No	Yes	No	No	Yes	No	ON	ON	cN	SZ	QZ.	Q.	į

Avg % Removal Rate	#DIV/01	84.4	81.5	96.2	43.2	#DIV/0!	79.4	77.1	59.1	#DIV/0!	87.3	#DIV/0!	#DIV/0i
EPA % REM	000.79	86.000	61.000	90.000	42.000	20.000	75.000	79.000	82.000	69.000	45.000	20.000	20.000
* Use EPA default #s	•					*							*
Geometric Mean*		0.0044	0.0003	0.0000	0.0027		0.0003	0.0331	0.0081		0.0012		
								-	TO0000		20000		

*Geometric Mean: The range in the geometric mean cannot contain a "zero" value; if less than 30 values are entered in each column, the user must either enter one-half the detection level or change the range of the geometric mean. The range of the geometric mean can be changed by specifying which rows have data.

Treatment Facility: City of Bentonville Data Range: 2016 - 2020 Domestic (mg/l) No data entered if Non-detects < MQL

	Beryllium	l/gm														0.0005			oN	0.00025
	Molybdenum	mg/l	0.0003													0.0100	0.0003	0.0003	oN N	0.005
	Arsenic	mg/l	0.0005							0.0029	0.0550	0.5400	0.0350			0.0005	0.1267	0.5400	No	0.00025
	Cyanide	mg/l			0.0031											0.0100	0.00309	0.00309	ON	0.005
	Chromium	mg/l	0.0020													0.0100	0.002	0.002	No	0.005
	Zinc	mg/l			0.1410		0.0001	0.0002	0.0005	0.1100	0.1900	0.6600	0.2800	0.0012	0.0015	0.0200	0.14	99:0	Yes	0.01
10	Silver	mg/l								900000			0.0015			0.0005	0.001065	0.001500	No	0.00025
DOMESTIC SAMPLING	Selenium	mg/l													0.00001	0.0050	0.000011	0.000011	No	0.0025
DOME	Nickel	mg/l	0.0070	0.0043	0.0043	0:0030				0.0054	0.0042	0.0097	0.0058			0.0005	0.0055	0.0097	No	0.00025
	Mercury	l/gm														0.000001			No	0.00000025
100	Lead	l/gm	0.0064		0.0038					6000:0	9000.0	8000.0	9000:0			0.0005	0.00216	0.00089	No	0.00025
	Copper	l/gm	0.0079	0.0225	0.0195	0.0208	0.0000		0.0000	0.0260	0.0350	0.0540	0.0370	0.000.0	0.0001	0.0005	0.01858	0.054	No	0.00025
	Cadmium	mg/l	0.0003									0.0005			0.000002	0.0005	0.000280	0.00052	No	0.00025
		Date	3/28-29/16	4/25-26/16	9/6-7/16	11/28-29/16	5/23-24/18	7/30-31/18	8/7-8/18	10/23-24/18	8/28-29/19	9/18-19/19	10/8-9/19	7/27-28/20	8/10-11/20	Quantitation Level (QL):	Average	Maximum	All Concs > QL (Yes/No)	Half Value of QL:

mg/l 0.0008 0 0.0050 0 0.0010 0	mg/l 0.00028000 0.01857702 0.00215833 0.00000025	1bs/day 0.01 0.06 0.00	Note 2016 - 2020 City Data used 1/2 the MQL of 0.000001 mg/l
0.00010	0.00545000 0.00001090 0.00025000	0.00	2016 - 2020 City Data 2016 - 2020 City Data used 1/2 the MQL of 0.000001 mg/l
0.0100	0.00200000	3.63	2016 - 2020 City Data 2016 - 2020 City Data
0.0004	0.000025000	0.26	used min. EPA guidance value used 1/2 the MQL of 0.0005 mg/l
	0.00026900	0.01	2016 - 2020 City Data
	0.00025000	0.01	used 1/2 the MQL of 0.0005 mg/l